Closing Wed: HW_3A, 3B, 3C

Midterm 1 is Thurs: 4.9, 5.1-5.5, 6.1-6.3

Entry Task:

Let R be the region bounded by

$$y = \frac{1}{x^2} + \frac{1}{x}$$
, $y = 0$, $x = 1$, $x = 2$.

- (a) Set up an integral for the volume of the solid obtained by rotating R about the x-axis.
- (b) Try to use cross-sectional slicing to set up an integral for the volume obtained by rotating R about the *y*-axis. Why is this difficult/messy?

6.3 Volumes Using Cylindrical Shells

Visual Motivation:

Consider the solid

We want to us "dx", but that breaking the region into thin vertical subdivisions and rotating those gives a new shape, "cylindrical shells"

Derivation:

The pattern for the volume of one thin cylindrical shell is

VOLUME = 2π (radius)(height)(thickness) = (surface area)(thickness)

Thus, if we can find a formula, $SA(x_i)$, for the surface area of a typical cylindrical shell, then

Thin Shell Volume $\approx SA(x_i) \Delta x$,

Total Volume
$$\approx \sum_{i=1}^{n} SA(x_i) \Delta x$$

Exact Volume =
$$\lim_{n\to\infty} \sum_{i=1}^{n} SA(x_i) \Delta x$$

Volume =
$$\int_{a}^{b} SA(x)dx$$
=
$$\int_{a}^{b} 2\pi (radius)(height)dx$$

Closing Wed: HW_3A, 3B, 3C

Midterm 1 is Thurs: 4.9, 5.1-5.5, 6.1-6.3

Entry Task:

Let R be the region bounded by

$$y = x^3$$
, $y = 4x$,
between $x = 1$ and $x = 2$.

- 1. Set up the integrals for the volume of the solid obtained by rotating R **about the y-axis**.
 - (a) Using dy.
 - (b) Using dx.
- 2. What changes if we rotate about the vertical line x = -2?
- 3. What changes if we rotate about the vertical line x = 3?

Volume using cylindrical shells

- Draw a typical rectangle parallel to the axis of rotation and draw a typical cylindrical shell. Label the thickness dx or dy appropriately. Label everything in terms of this variable.
- 2. Find the formula for the surface area of a typical shell: radius = ? (looks like x, x-a or a-x) height = ? (involves the functions)
- 3. Integrate!

$$\int_{a}^{b} 2\pi (\text{radius})(\text{height})(\text{dx or dy})$$

Volume using cross-sectional slicing

- Draw a typical rectangle
 perpendicular to the axis of rotation and cross-section.
 Label the thickness dx or dy appropriately.
 Label everything in terms of this variable.
- 2. Find the formula for the cross-sectional area:

Disc: Area = π (radius)² Washer: Area = π (outer)² - π (inner)²

3. Integrate!

$$\int_{a}^{b} (\pi(\text{outer})^2 - \pi(\text{inner})^2)(dx \text{ or dy})$$

Summary of Volume Methods

- Step 1: Choose the variable you want to use (based on the region and the given equations)
- Step 2: Draw typical rectangle based on the variable you chose which will either be perpendicular (disc/washer) or parallel (shells) to the axis of rotation.Draw a typical disc/washer or shell.Label thickness as dx or dy appropriately.Label everything else in terms of this variable.
- Step 3: Cross-sections: Find pattern for radius of disc/washers. Shells: Find pattern for radius and height of shells.
- Step 4: Integrate the appropriate pattern as we have discussed.

If you still are having trouble seeing which variable goes with which method here is a summary:

Axis of rotation	Disc/Washer	Shells
x-axis (or any horizontal axis)	dx	dy
y-axis (or any vertical axis)	dy	dx