Closing Wed: HW_3A, 3B, 3C Midterm 1 is Thurs: 4.9, 5.1-5.5, 6.1-6.3

Entry Task:
Let R be the region bounded by

$$
y=\frac{1}{x^{2}}+\frac{1}{x}, y=0, x=1, x=2
$$

(a) Set up an integral for the volume of the solid obtained by rotating R about the x-axis.
(b) Try to use cross-sectional slicing to set up an integral for the volume obtained by rotating R about the y axis. Why is this difficult/messy?

6.3 Volumes Using Cylindrical Shells

Visual Motivation:

Consider the solid

We want to us " $d x$ ", but that breaking the region into thin vertical subdivisions and rotating those gives a new shape, "cylindrical shells"

Derivation:

The pattern for the volume of one thin cylindrical shell is
VOLUME $=2 \pi$ (radius)(height)(thickness)
= (surface area)(thickness)
Thus, if we can find a formula, $\mathrm{SA}\left(\mathrm{x}_{\mathrm{i}}\right)$, for the surface area of a typical cylindrical shell, then
Thin Shell Volume $\approx S A\left(x_{i}\right) \Delta x$,
Total Volume $\approx \sum_{i=1}^{n} \mathrm{SA}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$
Exact Volume $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{SA}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$
$\begin{aligned} \text { Volume } & =\int_{a}^{b} S A(x) d x \\ & =\int_{a}^{b} 2 \pi(\text { radius })(\text { height }) d x\end{aligned}$

Closing Wed: HW_3A, 3B, 3C Midterm 1 is Thurs: 4.9, 5.1-5.5, 6.1-6.3

Entry Task:
Let R be the region bounded by

$$
\begin{gathered}
y=x^{3}, y=4 x \\
\text { between } \mathrm{x}=1 \text { and } x=2 .
\end{gathered}
$$

1. Set up the integrals for the volume of the solid obtained by rotating R about the y-axis.
(a) Using dy .
(b) Using dx .
2. What changes if we rotate about the vertical line $x=-2$?
3. What changes if we rotate about the vertical line $\mathrm{x}=3$?

Volume using cylindrical shells

1. Draw a typical rectangle parallel to the axis of rotation and draw a typical cylindrical shell. Label the thickness $d x$ or $d y$ appropriately. Label everything in terms of this variable.
2. Find the formula for the surface area of a typical shell:
radius $=$? (looks like x, x - a or $a-x$) height = ? (involves the functions)
3. Integrate!
$\int_{a}^{b} 2 \pi$ (radius)(height)(dx or dy)

Volume using cross-sectional slicing

1. Draw a typical rectangle perpendicular to the axis of rotation and cross-section. Label the thickness dx or dy appropriately. Label everything in terms of this variable.
2. Find the formula for the crosssectional area:
Disc: \quad Area $=\pi(\text { radius })^{2}$
Washer: Area $=\pi(\text { outer })^{2}-\pi(\text { inner })^{2}$
3. Integrate!
$\int_{a}^{b}\left(\pi(\text { outer })^{2}-\pi(\text { inner })^{2}\right)($ dx or dy $)$

Summary of Volume Methods

Step 1: Choose the variable you want to use (based on the region and the given equations)
Step 2: Draw typical rectangle based on the variable you chose which will either be perpendicular (disc/washer) or parallel (shells) to the axis of rotation.
Draw a typical disc/washer or shell.
Label thickness as dx or dy appropriately. Label everything else in terms of this variable.
Step 3: Cross-sections: Find pattern for radius of disc/washers.
Shells: Find pattern for radius and height of shells.
Step 4: Integrate the appropriate pattern as we have discussed.
If you still are having trouble seeing which variable goes with which method here is a summary:

Axis of rotation	Disc/Washer	Shells
x -axis (or any horizontal axis)	dx	dy
y -axis (or any vertical axis)	dy	dx

